Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of cardiovascular pharmacology

Increased contribution of L-arginine-nitric oxide pathway in aorta of mice lacking the gene for vimentin

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of cardiovascular pharmacology - 01 Oct 2001

Zhang J, Henrion D, Ebrahimian T, Benessiano J, Colucci-Guyon E, Langa F, Lévy BI, Boulanger CM

Link to Pubmed [PMID] – 11588525

J. Cardiovasc. Pharmacol. 2001 Oct;38(4):552-60

Experiments were designed to investigate endothelial function in the aorta of mice lacking the gene for the cytoskeleton protein vimentin (vim -/- ). Rings with and without endothelium from wild-type (vim +/+ ), heterozygous (vim +/- ), and homozygous (vim -/- ) mice were suspended in organ chambers to record of changes in isometric tension. During phenylephrine contraction, acetylcholine evoked comparable endothelium-dependent relaxations in the three groups. In the presence of Nomega-nitro-L-arginine, acetylcholine caused endothelium-dependent contractions, which were greater in vim -/- than in vim +/+ and vim +/- aortas. Indomethacin did not affect relaxation to acetylcholine in vim +/+ or in vim +/-, but it significantly increased the maximal response in vim -/- (67 +/- 7 vs. 102 +/- 4%). Response to acetylcholine in vim -/- aortas was not affected by cyclooxygenase type 2 inhibitor NS-398, the thromboxane receptor antagonist SQ-29,548, or superoxide dismutase. Relaxations to sodium nitroprusside were not different between vim +/+ and vim -/- mice and were not affected by cyclooxygenase inhibition. Cyclic guanosine monophosphate levels, which were increased to a comparable level by acetylcholine in vim +/+ and vim -/-, were augmented by indomethacin in vim -/- aortas but not in vim +/+ aortas. Expression of endothelial nitric oxide synthase was not different between vim +/+ and vim -/- preparations. These results suggest that despite comparable endothelium-dependent responses to acetylcholine, endothelial cells from vim -/- mice release a cyclooxygenase product that compensates the augmented contribution of nitric oxide.

http://www.ncbi.nlm.nih.gov/pubmed/11588525