Link to Pubmed [PMID] – 11087920
Mol. Biochem. Parasitol. 2000 Nov;111(1):95-105
Six discrete phylogenetic lineages were recently identified in Trypanosoma cruzi, on the basis of multilocus enzyme electrophoresis and random amplified polymorphic DNA (RAPD) characterisation. The objective of the present study was to develop specific PCR-based markers for the identification of each of the six lineages. Eighty-seven T. cruzi stocks representative of all the lineages were characterised by RAPD with three primers, resulting in the identification of three fragments that were specifically amplified in the given sets of lineages. After cloning and sequencing these fragments, three pairs of sequence-characterised amplified region (SCAR) primers were designed. After PCR amplification using the SCAR primers, the initial polymorphism was retained either as the presence or absence of amplification, or as size variation between the PCR products. Although most PCR products, taken individually, were distributed across several lineages, the combination of the three SCAR markers resulted in characteristic patterns that were distinct in the six lineages. Furthermore, T. cruzi lineages were distinguished from Trypanosoma rangeli, T. cruzi marinkellei and T. cruzi-like organisms. The excellent correspondence of these new PCR markers with the phylogenetic lineages, allied with their sensitivity, makes them reliable tools for lineage identification and strain characterisation in T. cruzi. The approach described here could be generalised to any species of microorganism harbouring clear-cut phylogenetic subdivisions.