Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

Identification of amino acids critical for the DNA binding and dimerization properties of the human retinoic acid receptor alpha. Importance of lysine 360, lysine 365, and valine 361

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 26 Jul 1996

Rachez C, Sautière P, Formstecher P, Lefebvre P

Link to Pubmed [PMID] – 8663386

J. Biol. Chem. 1996 Jul;271(30):17996-8006

Retinoic acid receptors (RARs) and retinoid X receptors (RXRs) activate target genes by binding to retinoic acid response elements (RAREs) as heterodimeric, asymmetrical complexes, and display a high degree of cooperativity in binding to RAREs. We have examined here the effect of lysine, cysteine, arginine, histidine, and tyrosine side chain chemical modification on the DNA binding, homo- and heterodimerization properties of the full-length human retinoic acid receptor alpha (hRARalpha). Lysines are the only residues to be engaged in the dimerization with human retinoid X receptor alpha (hRXRalpha) in the absence of DNA, whereas histidines are selectively involved in the homodimerization of hRARalpha in the presence of a RARE. Arginine modification affected the DNA binding activity of each type of dimer, whereas cysteines and tyrosines were primarily involved in the homo- or heterodimerization process in the presence of the same RARE. Modified lysines, interfering with the dimerization with hRXRalpha, were identified by receptor labeling and peptide mapping. They are located in the hormone binding domain eighth heptad repeat, at positions 360 and 365. In keeping with these results, mutation of Lys360, Val361, and Lys365 diminished strongly the DNA binding activity of hRARalpha as a homodimer or a heterodimer. Our results thus provide direct evidence for the differential involvement of basic, polar, or aromatic amino acids in the DNA binding, homodimerization, and heterodimerization properties of hRARalpha. Furthermore, they demonstrate the use of distinct dimerization interfaces and identify the type of amino acids involved in these protein-protein interactions.