Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of neuropathology and experimental neurology

Heparan sulfate proteoglycans modulate monocyte migration across cerebral endothelium

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of neuropathology and experimental neurology - 01 Jul 2003

Floris S, van den Born J, van der Pol SM, Dijkstra CD, De Vries HE

Link to Pubmed [PMID] – 12901703

J. Neuropathol. Exp. Neurol. 2003 Jul;62(7):780-90

Heparan sulfate proteoglycans (HSPGs) are known to participate in a wide range of biological events, including cellular trafficking. In this study we report that in situ cerebral blood vessels highly express HSPGs. Of the syndecan family, syndecan-2 is highly expressed on virtually all brain vessels and syndecan-1 and -3 are only present on larger blood vessels. These endothelial HSPGs have a functional role in monocyte diapedesis across brain endothelium, as assessed in our in vitro adhesion and migration assays. Our data indicate that heparin prevents monocyte adhesion to brain endothelium by interacting solely with the monocyte. Transendothelial migration of monocytes can be prevented by preincubation of brain endothelium with heparin by enzymatic removal of heparan sulphate side chains or by inhibition of cellular sulfation. Blocking of G-protein-dependent signaling in the monocytes prevented monocyte adhesion and migration to similar extent, suggesting that G-dependent signaling may be involved in HSPG-mediated monocyte adhesion and transendothelial migration. Our data demonstrate that brain endothelial HSPGs have a modulatory role in the transendothelial migration of monocytes in a direct and indirect fashion and may therefore contribute to the formation of neuroinflammatory lesions.

https://www.ncbi.nlm.nih.gov/pubmed/12901703