Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Cell host & microbe

Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Cell host & microbe - 11 Sep 2008

Barnes D, Kunitomi M, Vignuzzi M, Saksela K, Andino R

Link to Pubmed [PMID] – 18779050

Cell Host Microbe 2008 Sep;4(3):239-48

Live attenuated vaccines remain the safest, most cost-effective intervention against viral infections. Because live vaccine strains are generated empirically and the basis for attenuation is usually ill defined, many important viruses lack an efficient live vaccine. Here, we present a general strategy for the rational design of safe and effective live vaccines that harnesses the microRNA-based gene-silencing machinery to control viral replication. Using poliovirus as a model, we demonstrate that insertion of small miRNA homology sequences into a viral genome can restrict its tissue tropism, thereby preventing pathogenicity and yielding an attenuated viral strain. Poliovirus strains engineered to become targets of neuronal-specific miRNAs lost their ability to replicate in the central nervous system, leading to significant attenuation of neurovirulence in infected animals. Importantly, these viruses retained the ability to replicate in nonneuronal tissues. As a result, these engineered miRNA-regulated viruses elicited strong protective immunity in mice without producing disease.

http://www.ncbi.nlm.nih.gov/pubmed/18779050