Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of the Royal Society, Interface

Growing from a few cells: combined effects of initial stochasticity and cell-to-cell variability.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of the Royal Society, Interface - 26 Apr 2019

Barizien A, Suryateja Jammalamadaka MS, Amselem G, Baroud CN,

Link to Pubmed [PMID] – 31014203

Link to DOI – 10.1098/rsif.2018.0935

J R Soc Interface 2019 04; 16(153): 20180935

The growth of a cell population from a large inoculum appears deterministic, although the division process is stochastic at the single-cell level. Microfluidic observations, however, display wide variations in the growth of small populations. Here we combine theory, simulations and experiments to explore the link between single-cell stochasticity and the growth of a population starting from a small number of individuals. The study yields descriptors of the probability distribution function (PDF) of the population size under three sources of stochasticity: cell-to-cell variability, uncertainty in the number of initial cells and generation-dependent division times. The PDF, rescaled to account for the exponential growth of the population, is found to converge to a stationary distribution. All moments of the PDF grow exponentially with the same growth rate, which depends solely on cell-to-cell variability. The shape of the PDF, however, contains the signature of all sources of stochasticity, and is dominated by the early stages of growth, and not by the cell-to-cell variability. Thus, probabilistic predictions of the growth of bacterial populations can be obtained with implications for both naturally occurring conditions and technological applications of single-cell microfluidics.