Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Bioinformatics (Oxford, England)

Graph analysis of fragmented long-read bacterial genome assemblies

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Bioinformatics (Oxford, England) - 27 Mar 2019

Marijon P, Chikhi R, Varré JS

Link to Pubmed [PMID] – 30918948

Bioinformatics 2019 Mar;

MOTIVATION: Long-read genome assembly tools are expected to reconstruct bacterial genomes nearly perfectly, however they still produce fragmented assemblies in some cases. It would be beneficial to understand whether these cases are intrinsically impossible to resolve, or if assemblers are at fault, implying that genomes could be refined or even finished with little to no additional experimental cost.

RESULTS: We propose a set of computational techniques to assist inspection of fragmented bacterial genome assemblies, through careful analysis of assembly graphs. By finding paths of overlapping raw reads between pairs of contigs, we recover potential short-range connections between contigs that were lost during the assembly process. We show that our procedure recovers 45% of missing contig adjacencies in fragmented Canu assemblies, on samples from the NCTC bacterial sequencing project. We also observe that a simple procedure based on enumerating weighted Hamiltonian cycles can suggest likely contig orderings. In our tests, the correct contig order is ranked first in half of the cases and within the top-3 predictions in nearly all evaluated cases, providing a direction for finishing fragmented long-read assemblies.

AVAILABILITY: https://gitlab.inria.fr/pmarijon/knot.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.