Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Therese Couderc, Marc Lecuit
Publication : International journal of food microbiology

Genotypic and phenotypic characterisation of a collection of Cronobacter (Enterobacter sakazakii) isolates.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in International journal of food microbiology - 10 Feb 2010

Miled-Bennour R, Ells TC, Pagotto FJ, Farber JM, Kérouanton A, Meheut T, Colin P, Joosten H, Leclercq A, Besse NG,

Link to Pubmed [PMID] – 20181403

Link to DOI – 10.1016/j.ijfoodmicro.2010.01.045

Int J Food Microbiol 2010 Apr; 139(1-2): 116-25

Enterobacter sakazakii has been identified as the causative agent of serious neonatal infections, associated with high mortality rate. In many cases, powdered infant formula (PIF) has been identified as the source of infection. Recently, E. sakazakii was proposed to be classified in a new genus, Cronobacter. Since knowledge on this pathogen is still incomplete, there is a need for molecular characterization schemes in order to help with epidemiological investigation and evaluate strain variability. The objectives of this study were to combine genotypic (pulsed-field gel electrophoresis [PFGE], 16S rRNA gene sequencing, and automated ribotyping) methods with traditional phenotypic biochemical methods to characterize a collection of Cronobacter isolates from various origins. In addition, the relative growth dynamics were compared by estimating the growth rates for each isolate in non-selective broth (BHI) at 25 degrees C and 37 degrees C. According to biochemical test profiles the majority of isolates were identified as Cronobacter sakazakii, which seemed to be the most common species distributed in the environment of PIF production plants. Furthermore, the PFGE technique displayed very high discriminatory power as 61 distinct pulsotypes were revealed among the 150 Cronobacter isolates. Combining information on sample origin and pulse type, 64 isolates were deemed as unique strains. Although genetic typing data for the strains clearly delineated them into clusters closely corresponding to biochemical speciation results, it was not without discrepancies as some strains did not group as predicted. Important for quantitative risk assessment is the fact that despite the high genetic heterogeneity observed for this collection, most Cronobacter strains displayed similar growth rates irrespective of species designation.