Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Methods in enzymology

Generation of a Metagenomics Proximity Ligation 3C Library of a Mammalian Gut Microbiota

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Methods in enzymology - 18 Sep 2018

Foutel-Rodier T, Thierry A, Koszul R, Marbouty M

Link to Pubmed [PMID] – 30502941

Meth. Enzymol. 2018;612:183-195

Microbial species thrive in very diverse environments and play fundamental roles in their equilibrium and dynamics. Metagenomics consists in extracting, sequencing, and studying the DNA present in ecosystems to better understand their regulation. Ideally, the maximal amount of information would be gathered from the full sequences of the genomes, episomes, and phages present in the microbial communities. Current high-throughput DNA sequencing produces reads ranging in size from a few dozen base pairs for the most commonly used technologies to several kb for emerging single-molecule real-time sequencing techniques. Although valuable information can be extracted from processing these DNA sequences into contigs, reconstructing full genomes remains a difficult task. Clustering contigs according to their similarities or read coverage covariations gives some insights on these genomes, but remains limited as viral sequences, or recent horizontal gene transfers, often differ from their host genomes. We recently developed meta3C, a proximity ligation approach that bins contigs in a sequence-independent way by quantifying and exploiting their tridimensional collisions frequencies in vivo. This technique has demonstrated a great potential to reconstruct genomes as well as to assign plasmids and phages to their hosts. It nevertheless requires a specific processing of the microbial samples before sequencing, which has to be carefully planned.