Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Proceedings of the National Academy of Sciences of the United States of America

Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proceedings of the National Academy of Sciences of the United States of America - 06 Jun 2017

Buckingham M

Link to Pubmed [PMID] – 28584083

Proc. Natl. Acad. Sci. U.S.A. 2017 06;114(23):5830-5837

Skeletal muscle in vertebrates is formed by two major routes, as illustrated by the mouse embryo. Somites give rise to myogenic progenitors that form all of the muscles of the trunk and limbs. The behavior of these cells and their entry into the myogenic program is controlled by gene regulatory networks, where paired box gene 3 () plays a predominant role. Head and some neck muscles do not derive from somites, but mainly form from mesoderm in the pharyngeal region. Entry into the myogenic program also depends on the myogenic determination factor () family of genes, but is not expressed in these myogenic progenitors, where different gene regulatory networks function, with T-box factor 1 () and paired-like homeodomain factor 2 () as key upstream genes. The regulatory genes that underlie the formation of these muscles are also important players in cardiogenesis, expressed in the second heart field, which is a major source of myocardium and of the pharyngeal arch mesoderm that gives rise to skeletal muscles. The demonstration that both types of striated muscle derive from common progenitors comes from clonal analyses that have established a lineage tree for parts of the myocardium and different head and neck muscles. Evolutionary conservation of the two routes to skeletal muscle in vertebrates extends to chordates, to trunk muscles in the cephlochordate and to muscles derived from cardiopharyngeal mesoderm in the urochordate , where a related gene regulatory network determines cardiac or skeletal muscle cell fates. In conclusion, Eric Davidson’s visionary contribution to our understanding of gene regulatory networks and their evolution is acknowledged.