Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Microbiology (Reading, England)

GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Microbiology (Reading, England) - 01 Jan 2004

Hommais F, Krin E, Coppée JY, Lacroix C, Yeramian E, Danchin A, Bertin P

Link to Pubmed [PMID] – 14702398

Microbiology (Reading, Engl.) 2004 Jan;150(Pt 1):61-72

In several Gram-positive and Gram-negative bacteria glutamate decarboxylases play an important role in the maintenance of cellular homeostasis in acid environments. Here, new insight is brought to the regulation of the acid response in Escherichia coli. Overexpression of yhiE, similarly to overexpression of gadX, a known regulator of glutamate decarboxylase expression, leads to increased resistance of E. coli strains under high acid conditions, suggesting that YhiE is a regulator of gene expression in the acid response. Target genes of both YhiE (renamed GadE) and GadX were identified by a transcriptomic approach. In vitro experiments with GadE purified protein provided evidence that this regulator binds to the promoter region of these target genes. Several of them are clustered together on the chromosome and this chromosomal organization is conserved in many E. coli strains. Detailed structural (in silico) analysis of this chromosomal region suggests that the promoters of the corresponding genes are preferentially denatured. These results, along with the G+C signature of the chromosomal region, support the existence of a fitness island for acid adaptation on the E. coli chromosome.