Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Virus evolution

Full-genome dengue virus sequencing in mosquito saliva shows lack of convergent positive selection during transmission by

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Virus evolution - 06 Nov 2017

Lequime S, Richard V, Cao-Lormeau VM, Lambrechts L

Link to Pubmed [PMID] – 29497564

Virus Evol 2017 Jul;3(2):vex031

Like other pathogens with high mutation and replication rates, within-host dengue virus (DENV) populations evolve during infection of their main mosquito vector,. Within-host DENV evolution during transmission provides opportunities for adaptation and emergence of novel virus variants. Recent studies of DENV genetic diversity failed to detect convergent evolution of adaptive mutations in mosquito tissues such as midgut and salivary glands, suggesting that convergent positive selection is not a major driver of within-host DENV evolution in the vector. However, it is unknown whether this conclusion extends to the transmitted viral subpopulation because it is technically difficult to sequence DENV genomes in mosquito saliva. Here, we achieved DENV full-genome sequencing by pooling saliva samples collected non-sacrificially from 49 to 163 individualmosquitoes previously infected with one of two DENV-1 genotypes. We compared the transmitted viral subpopulations found in the pooled saliva samples collected in time series with the input viral population present in the infectious blood meal. In all pooled saliva samples examined, the full-genome consensus sequence of the input viral population was unchanged. Although the pooling strategy prevents analysis of individual saliva samples, our results demonstrate the lack of strong convergent positive selection during a single round of DENV transmission by. This finding reinforces the idea that genetic drift and purifying selection are the dominant evolutionary forces shaping within-host DENV genetic diversity during transmission by mosquitoes.