Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Proceedings of the National Academy of Sciences of the United States of America

Fibroblast growth factor 10 gene regulation in the second heart field by Tbx1, Nkx2-5, and Islet1 reveals a genetic switch for down-regulation in the myocardium

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proceedings of the National Academy of Sciences of the United States of America - 23 Oct 2012

Watanabe Y, Zaffran S, Kuroiwa A, Higuchi H, Ogura T, Harvey RP, Kelly RG, Buckingham M

Link to Pubmed [PMID] – 23093675

Proc. Natl. Acad. Sci. U.S.A. 2012 Nov;109(45):18273-80

During cardiogenesis, Fibroblast Growth Factor (Fgf10) is expressed in the anterior second heart field. Together with Fibroblast growth factor 8 (Fgf8), Fgf10 promotes the proliferation of these cardiac progenitor cells that form the arterial pole of the heart. We have identified a 1.7-kb region in the first intron of Fgf10 that is necessary and sufficient to direct transgene expression in this cardiac context. The 1.7-kb sequence is directly controlled by T-box transcription factor 1 (Tbx1) in anterior second heart field cells that contribute to the outflow tract. It also responds to both NK2 transcription factor related, locus 5 (Nkx2-5) and ISL1 transcription factor, LIM/homeodomain (Islet1), acting through overlapping sites. Mutation of these sites reduces transgene expression in the anterior second heart field where the Fgf10 regulatory element is activated by Islet1 via direct binding in vivo. Analysis of the response to Nkx2-5 loss- and Isl1 gain-of-function genetic backgrounds indicates that the observed up-regulation of its activity in Nkx2-5 mutant hearts, reflecting that of Fgf10, is due to the absence of Nkx2-5 repression and to up-regulation of Isl1, normally repressed in the myocardium by Nkx2-5. ChIP experiments show strong binding of Nkx2-5 in differentiated myocardium. Molecular and genetic analysis of the Fgf10 cardiac element therefore reveals how key cardiac transcription factors orchestrate gene expression in the anterior second heart field and how genes, such as Fgf10, normally expressed in the progenitor cell population, are repressed when these cells enter the heart and differentiate into myocardium. Our findings provide a paradigm for transcriptional mechanisms that underlie the changes in regulatory networks during the transition from progenitor state to that of the differentiated tissue.

http://www.ncbi.nlm.nih.gov/pubmed/23093675