Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© A-M. Pais-Correia, M-I. Thoulouze, A. Alcover, A. Gessain
Mise en évidence de structures de type "biofilm ", formées par le rétrovirus HTLV-1 générés par des cellules infectées (cellules du haut), qui ont été transmis à un autre lymphocyte (cellule du bas). Micrographie en microscopie électronique à balayage. Image colorisée.
Publication : PloS one

Exploration of sensing data to realize intended odor impression using mass spectrum of odor mixture.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PloS one - 01 Jan 2022

Hasebe D, Alexandre M, Nakamoto T,

Link to Pubmed [PMID] – 35976921

Link to DOI – e027301110.1371/journal.pone.0273011

PLoS One 2022 ; 17(8): e0273011

Recently, olfactory information on odorants has been associated with their corresponding molecular features. Such information has been obtained by predicting the sensory test evaluation scores from the molecular structure parameters or the sensing data. On the other hand, we develop a method of the prediction of molecular features corresponding to the odor impression. We utilize a machine-learning-based odor predictive model introduced in our previous research, and we propose a mathematical model for exploring the sensing data space. By using mass spectrum as sensing data in the predictive model, we can represent predicted mass spectrum as those of an odor mixture, and the mixing ratio can be obtained. We show that the mass spectrum of apple flavor with enhanced ‘fruit’ and ‘sweet’ impressions can be obtained using 59 and 60 molecules respectively by using our analysis method.