Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Protein science : a publication of the Protein Society

Effect of multiple symmetries on the association of R67 DHFR subunits bearing interfacial complementing mutations

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Protein science : a publication of the Protein Society - 01 Jan 2004

Dam J, Blondel A

Link to Pubmed [PMID] – 14691216

Protein Sci. 2004 Jan;13(1):1-14

It was shown previously that complementation could be a powerful mean to probe protein-protein interactions in the normally tetrameric R67 DHFR. Indeed, mixing complementing inactive dimeric mutants produced active heterotetramers. This approach turned a homo-oligomer into a hetero-oligomer and thus allowed the use of combinatorial assays, a subtle analysis of the association forces, and a precise determination of the equilibrium dissociation constants (K(D)) by titrimetry. However, for some of the complementing pairs, the experimental data implied multiple equilibria involving heterodimers, although no monomers could be detected. Thus, the reactions involved had to be identified to elaborate a suitable model to determine the K(D) of those pairs correctly. That model suggested that homodimers associated rapidly before the protomers could be redistributed in a multiple equilibrium system. Kinetic data confirmed that view. The association data at equilibrium were analyzed by multiple curve fitting with all plausible combinations of parameters. This gave a confidence interval for K(D) that is safer than the usual 67% or 90% confidence interval. Finally, the K(D) of one specific reaction, the dissociation of a heterotetramer with the relevant symmetry into two homodimers could be determined with the relevant model for each complementing pair, although multiple equilibria were present. These K(D) can thus be used as a set of references data to test and improve theoretical methods such as association free energy calculations.