Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : DNA repair

DNA polymerase μ is a global player in the repair of non-homologous end-joining substrates.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in DNA repair - 02 Jan 2012

Chayot R, Montagne B, Ricchetti M,

Link to Pubmed [PMID] – 22071146

Link to DOI – 10.1016/j.dnarep.2011.09.016

DNA Repair (Amst) 2012 Jan; 11(1): 22-34

The specialized DNA polymerase μ (pol μ) intervenes in the repair mechanism non-homologous end-joining (NHEJ) as an end-processing factor but its role has not been fully elucidated. Pol μ has been shown to participate in DNA synthesis at junctions in vitro, including on unpaired substrates, and to promote annealing. However, the phenotypes observed in vivo poorly recapitulate the functions of pol μ reported in vitro. We analysed the repair of DNA double-strand breaks (DSBs) in a cellular context using improved NHEJ substrates. These substrates do not replicate in mammalian cells, thereby result in clonal repair events, which allows the measure of the efficiency of repair. We validated this paradigm by comparing the repair of NHEJ substrates to the repair reported for chromosome DSBs in mouse cells. Molecular analysis and, in most cases sequencing of more than 1500 repair events on a variety of NHEJ substrates in wild type and pol μ(-/-) mouse embryonic fibroblasts shows that, unexpectedly, the absence of pol μ decreases the efficiency of joining of all types of DSBs, including those that do not undergo end-processing. Importantly, by reducing the efficiency of accurate events, lack of pol μ also affects the overall fidelity of the repair process. We also show that, although pol μ does not help protect DNA ends from resection, the efficiency of repair of resected ends is reduced in the absence of pol μ. Interestingly, the DNA synthesis activity of pol μ, including on non-aligned substrates, appears negligible at least in a cellular context. Our data point to a critical role for pol μ as a global repair player that increases the efficiency and the fidelity of NHEJ.