Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of the American Chemical Society

Direct observation of Calpha-Halpha…O=C hydrogen bonds in proteins by interresidue h3JCalphaC’ scalar couplings

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of the American Chemical Society - 24 Dec 2003

Cordier F, Barfield M, Grzesiek S

Link to Pubmed [PMID] – 14677958

J. Am. Chem. Soc. 2003 Dec;125(51):15750-1

The role of C-H…O hydrogen bonds in the stabilization of biomolecules is increasingly being recognized from the evidence of close C-H…O contacts in crystal structures. However, relatively little is known about their strength. Here, we report the observation of NMR scalar couplings (h3JCalphaC’) between the two carbons on each side of Calpha-Halpha…O=C H-bonds in proteins. These couplings give direct evidence of the correlation of the electronic wave functions in the donor and acceptor groups of Calpha-Halpha…O=C H-bonds. A long-range H(NCO)CA experiment or a selective long-range H(NCA)CO experiment was used for the detection of h3JCalphaC’ correlations in the beta-sheet regions of the immunoglobulin binding domain of protein G. In total, six such correlations were detectable. These correspond to half of the Calpha-Halpha…O=C H-bonds of protein G with Halpha…O distances shorter than 2.5 A. The h3JCalphaC’ couplings range from 0.2 to 0.3 Hz and are in good agreement with predicted average values based on DFT/FPT calculations. An anticorrelation is observed with the size of h3JNC’ coupling constants across N-HN…O=C H-bonds, which share the same acceptor carbonyl oxygen.