Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Biochemistry

Dimer disruption and monomer sequestration by alkyl tripeptides are successful strategies for inhibiting wild-type and multidrug-resistant mutated HIV-1 proteases

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Biochemistry - 20 Jan 2009

Bannwarth L, Rose T, Dufau L, Vanderesse R, Dumond J, Jamart-Grégoire B, Pannecouque C, De Clercq E, Reboud-Ravaux M

Link to Pubmed [PMID] – 19105629

Biochemistry 2009 Jan;48(2):379-87

Wild-type and drug-resistant mutated HIV-1 proteases are active as dimers. This work describes the inhibition of their dimerization by a new series of alkyl tripeptides that target the four-stranded antiparallel beta-sheet formed by the interdigitation of the N- and C-monomer ends of each monomer. Analytical ultracentrifugation was used to give experimental evidence of their mode of action that is disruption of the active homodimer with formation of inactive monomer-inhibitor complexes. The minimum length of the alkyl chain needed to inhibit dimerization was established. Sequence variations led to a most potent HIV-PR dimerization inhibitor: palmitoyl-Leu-Glu-Tyr (Kid = 0.3 nM). Insertion of d-amino acids at the first two positions of the peptide moiety increased the inhibitor resistance to proteolysis without abolishing the inhibitory effect. Molecular dynamics simulations of the inhibitor series complexed with wild-type and mutated HIV-PR monomers corroborated the kinetic data. They suggested that the lipopeptide peptide moiety replaces the middle strand in the highly conserved intermolecular four-stranded beta-sheet formed by the peptide termini of each monomer, and the alkyl chain is tightly grasped by the active site groove capped by the beta-hairpin flap in a “superclosed” conformation. These new inhibitors were equally active in vitro against both wild-type and drug-resistant multimutated proteases, and the model suggested that the mutations in the monomer did not interfere with the inhibitor.