Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Development (Cambridge, England)

DeXtrusion: automatic recognition of epithelial cell extrusion through machine learning in vivo.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Development (Cambridge, England) - 07 Jun 2023

Villars A, Letort G, Valon L, Levayer R

Link to Pubmed [PMID] – 37283069

Link to DOI – 10.1242/dev.201747

Development 2023 Jul; 150(13):

Accurately counting and localising cellular events from movies is an important bottleneck of high-content tissue/embryo live imaging. Here, we propose a new methodology based on deep learning that allows automatic detection of cellular events and their precise xyt localisation on live fluorescent imaging movies without segmentation. We focused on the detection of cell extrusion, the expulsion of dying cells from the epithelial layer, and devised DeXtrusion: a pipeline based on recurrent neural networks for automatic detection of cell extrusion/cell death events in large movies of epithelia marked with cell contour. The pipeline, initially trained on movies of the Drosophila pupal notum marked with fluorescent E-cadherin, is easily trainable, provides fast and accurate extrusion predictions in a large range of imaging conditions, and can also detect other cellular events, such as cell division or cell differentiation. It also performs well on other epithelial tissues with reasonable re-training. Our methodology could easily be applied for other cellular events detected by live fluorescent microscopy and could help to democratise the use of deep learning for automatic event detections in developing tissues.