Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Emeline Camand
Marquage par immunofluorescence d'astrocytes tumoraux ou astrocytomes (lignée cellulaire humaine U373), montrant en rouge, APC et en vert, la tubuline des microtubules. APC est un supresseur de tumeur qui est impliqué dans la polarisation des astrocytes normaux. La localisation d'APC est altérée dans des lignées de gliomes. Pour essayer de corriger, les dérèglements observés lors de la migration des cellules d'astrocytes tumuraux ou gliomes on cherche à connaitre les mécanismes moléculaires fondamentaux qui controlent la polarisation et la migration cellulaire.
Publication : Proceedings of the National Academy of Sciences of the United States of America

Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proceedings of the National Academy of Sciences of the United States of America - 14 Jun 2007

Leduc C, Ruhnow F, Howard J, Diez S

Link to Pubmed [PMID] – 17569782

Proc. Natl. Acad. Sci. U.S.A. 2007 Jun;104(26):10847-52

The stepping behavior of single kinesin-1 motor proteins has been studied in great detail. However, in cells, these motors often do not work alone but rather function in small groups when they transport cellular cargo. Until now, the cooperative interactions between motors in such groups were poorly understood. A fundamental question is whether two or more motors that move the same cargo step in synchrony, producing the same step size as a single motor, or whether the step size of the cargo movement varies. To answer this question, we performed in vitro gliding motility assays, where microtubules coated with quantum dots were driven over a glass surface by a known number of kinesin-1 motors. The motion of individual microtubules was then tracked with nanometer precision. In the case of transport by two kinesin-1 motors, we found successive 4-nm steps, corresponding to half the step size of a single motor. Dwell-time analysis did not reveal any coordination, in the sense of alternate stepping, between the motors. When three motors interacted in collective transport, we identified distinct forward and backward jumps on the order of 10 nm. The existence of the fractional steps as well as the distinct jumps illustrate a lack of synchronization and has implications for the analysis of motor-driven organelle movement investigated in vivo.

http://www.ncbi.nlm.nih.gov/pubmed/17569782