Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Advanced materials (Deerfield Beach, Fla.)

Design of Mixed-Matrix MOF Membranes with Asymmetric Filler Density and Intrinsic MOF/Polymer Compatibility for Enhanced Molecular Sieving.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Advanced materials (Deerfield Beach, Fla.) - 22 Mar 2024

Hardian R, Jia J, Diaz-Marquez A, Naskar S, Fan D, Shekhah O, Maurin G, Eddaoudi M, Szekely G

Link to Pubmed [PMID] – 38517323

Link to DOI – 10.1002/adma.202314206

Adv Mater 2024 Mar; (): e2314206

The separation of high-value-added chemicals from organic solvents is of prime importance for many industries but it is associated with a large energy consumption penalty. Suitably, membrane-based nanofiltration offers potential for a more energy-efficient separation than the conventional energy-intensive thermal processes. Conceivably, mixed-matrix membranes (MMMs), encompassing metal-organic frameworks (MOFs) as fillers, are poised to promote selective separation via molecular sieving, synergistically combining polymers flexibility and fine-tuned porosity of MOFs. Nevertheless, conventional direct mixing of MOFs with polymer solutions results in underutilization of the MOF fillers owing to their uniform cross-sectional distribution. Therefore, in this work, we propose a multizoning technique for the formation of MMMs with an asymmetric-filler density at the macroscale, in which the MOF fillers are distributed only on the surface of the membrane, and a seamless interface at the nanoscale. Our design strategy demonstrates five times higher MOF surface coverage, which results in a solvent permeance five times higher than that of conventional MMMs while maintaining high selectivity. Practically, MOFs are paired with polymers of similar chemical nature in order to enhance their adhesion without the need for additional surface modification. Our approach offers permanently accessible MOF porosity, which translates to effective molecular sieving, as exemplified by the polybenzimidazole and Zr-BI-fcu-MOF system. Our findings pave the way for the development of composite materials with a seamless interface. This article is protected by copyright. All rights reserved.