Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© A. Alanio, E. Perret
Prolifération de Cryptococcus neoformans dans des macrophages murins.
Publication : Infection and immunity

Deletions of endocytic components VPS28 and VPS32 affect growth at alkaline pH and virulence through both RIM101-dependent and RIM101-independent pathways in Candida albicans

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Infection and immunity - 01 Dec 2005

Cornet M, Bidard F, Schwarz P, Da Costa G, Blanchin-Roland S, Dromer F, Gaillardin C

Link to Pubmed [PMID] – 16299290

Infect. Immun. 2005 Dec;73(12):7977-87

Ambient pH signaling involves a cascade of conserved Rim or Pal products in ascomycetous yeasts or filamentous fungi, respectively. Recent evidences in the fungi Aspergillus nidulans, Saccharomyces cerevisiae, Yarrowia lipolytica, and Candida albicans suggested that components of endosomal sorting complexes required for transport (ESCRT) involved in endocytic trafficking were needed for signal transduction along the Rim pathway. In this study, we confirm these findings with C. albicans and show that Vps28p (ESCRT-I) and Vps32p/Snf7p (ESCRT-III) are required for the transcriptional regulation of known targets of the Rim pathway, such as the PHR1 and PHR2 genes encoding cell surface proteins, which are expressed at alkaline and acidic pH, respectively. We additionally show that deletion of these two VPS genes, particularly VPS32, has a more drastic effect than a RIM101 deletion on growth at alkaline pH and that this effect is only partially suppressed by expression of a constitutively active form of Rim101p. Finally, in an in vivo mouse model, both vps null mutants were significantly less virulent than a rim101 mutant, suggesting that VPS28 and VPS32 gene products affect virulence both through Rim-dependent and Rim-independent pathways.

http://www.ncbi.nlm.nih.gov/pubmed/16299290