Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Malaria journal

Cytometric measurement of in vitro inhibition of Plasmodium falciparum field isolates by drugs: a new approach for re-invasion inhibition study

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Malaria journal - 21 Mar 2014

Varela ML, Razakandrainibe R, Aldebert D, Barale JC, Jambou R

Link to Pubmed [PMID] – 24649924

Malar. J. 2014;13:110

BACKGROUND: A flow cytometric method is proposed to study in vitro drug sensitivity of Plasmodium falciparum. Standard [(3)H]-hypoxanthine incorporation assay gives only information on inhibition of maturation by drugs. This method is usable on field isolates and provides data on both inhibition of maturation and re-invasion.

METHODS: The method is based on the staining of parasites with hydroethidine (HE) and thiazole orange (TO) which allow differential identification of early, trophozoite and late stage of the parasite by flow cytometry. Late stages of the parasites are obtained by incubation in culture for 24 hours. Reinvasion is followed by culturing parasitized red blood cells for 24 h more.

RESULTS: Compared to the standard [(3)H]-hypoxanthine incorporation assay, it gave similar results as expressed by 50% inhibitory concentrations for chloroquine of laboratory strains and “field” isolates. The effect of quinine on the schizont-ring transition was also explored using this method. First data on the inhibition of re-invasion induced by quinine are presented for both P. falciparum-cultured strains and field isolates.

DISCUSSION: This method is simple to use event for field isolate study. It is suitable to analyse effect of drugs on steps of the parasite life cycle different for the maturation one. Using this method quinine was found to have a inhibitory effect on re-invasion of red cells by Plasmodium.