Link to Pubmed [PMID] – 1579440
Nucleic Acids Res. 1992 Apr;20(7):1491-6
We analysed the genetic stability of two subtelomeric genes of the human malaria parasite Plasmodium falciparum. A PCR based assay, using a telomere and a target-gene specific primer was used to detect potential chromosome rearrangements. We show that chromosome breakage and the formation of new telomeres occur frequently in the two genes coding for histidine rich proteins (HRP I and HRP II) in laboratory isolates, but remains undetectable in clinical parasite isolates. This finding suggests an essential role of these genes in vivo and that chromosome breakage is rather an accidental process than a programmed chromosome fragmentation. Cloning and sequencing of 8 chromosome breakpoints of the HRP II gene from one parasite isolate shows that the breakage occurs within a broad region in which new telomere formation appear to take place at random sites. Furthermore, this analysis revealed no obvious sequence similarities of sites of telomere addition. Finally, we show that an irregular pattern of heterogeneous telomere repeats is added at each broken end and that each healed chromosome contains a distinct pattern of repeats. We discuss a model for telomere formation in P. falciparum.