Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Marie Prévost, Institut Pasteur
Image of a portion of a Xenopus oocyte expressing a channel receptor.
Publication : Journal of cellular biochemistry

Chondrogenic Differentiation of Human Mesenchymal Stem Cells Results in Substantial Changes of Ecto-Nucleotides Metabolism

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of cellular biochemistry - 01 Dec 2015

Roszek K, Porowińska D, Bajek A, Hołysz M, Czarnecka J

Link to Pubmed [PMID] – 26018728

J. Cell. Biochem. 2015 Dec;116(12):2915-23

Mesenchymal stem cells (MSCs) are population of adult stem cells and attractive candidates for cartilage repair due to their chondrogenic potential. Purinergic compounds (purinergic receptors and ecto-enzymes metabolizing nucleotides), together with nucleotides/nucleosides present in the extracellular environment, are known to play a key role in controlling the stem cells biological potential to proliferate and differentiate. Despite the available literature pointing to the importance of purinergic signaling in controlling the fate of MSCs, the research results linking nucleotides and ecto-nucleotidases with MSCs chondrogenic differentiation are indigent. Therefore, the aim of presented study was the characterization of the ecto-nucleotides hydrolysis profile and ecto-enzymes expression in human umbilical cord-derived MSCs and chondrogenically induced MSCs. We described substantial changes of ecto-nucleotides metabolism and ecto-enzymes expression profiles resulting from chondrogenic differentiation of human umbilical cord-derived MSCs. The increased rate of ADP hydrolysis, measured by ecto-nucleotidases activity, plays a pivotal role in the regulation of cartilage formation and resorption. Despite the increased level of NTPDase1 and NTPDase3 mRNA expression in chondrogenically induced MSCs, their activity toward ATP remains quite low. Supported by the literature data, we hypothesize that structure-function relationships in chondrogenic lineage dictate the direction of nucleotides metabolism. In early neocartilage tissue, the beneficial role of ATP in improving biomechanical properties of cartilage does not necessitate the high rate of enzymatic ATP degradation.