Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Therese Couderc, Marc Lecuit
Publication : Current genetics

ChECing out Rif1 action in freely cycling cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Current genetics - 19 Nov 2018

Hafner L, Shore D, Mattarocci S

Link to Pubmed [PMID] – 30456647

Curr. Genet. 2018 Nov;

In buddying yeast, like all eukaryotes examined so far, DNA replication is under temporal control, such that some origins fire early and some late during S phase. This replication timing program is established in G1 phase, where chromatin states are thought to prevent binding of key-limiting initiation factors at late-firing origins. Although many factors are involved in replication initiation, a new player, Rif1, has recently entered the scene, with a spate of papers revealing a global role for the protein in the control of replication initiation timing from yeasts to humans. Since budding yeast Rif1 was known to bind only to telomeric and silent mating loci regions, it remained controversial whether Rif1 acts directly at replication origins or instead influences origin activity indirectly. In this perspective, we discuss our recent finding that Rif1 binds directly to the replication origins that it controls. In this study, we also found that Rif1’s regulatory activity at origins is best revealed by an assay (sort-seq) that measures replication in unperturbed, freely cycling cultures, as opposed to commonly used protocols in which cells are first blocked in the G1 phase of the cell cycle by mating pheromone, then released into a synchronous S phase. Finally, we discuss how the sequestration of Rif1 at telomeres, through an interaction with the arrays of Rap1 molecules bound there, plays an important role in limiting Rif1’s action primarily to telomere-proximal replication origins.