Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Oncogene

Characterization of mammary tumors from Brg1 heterozygous mice

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Oncogene - 16 Jul 2007

Bultman SJ, Herschkowitz JI, Godfrey V, Gebuhr TC, Yaniv M, Perou CM, Magnuson T

Link to Pubmed [PMID] – 17637742

Oncogene 2008 Jan;27(4):460-8

Mammalian SWI/SNF-related complexes have been implicated in cancer based on some of the subunits physically interacting with retinoblastoma (RB) and other proteins involved in carcinogenesis. Additionally, several subunits are mutated or not expressed in tumor-derived cell lines. Strong evidence for a role in tumorigenesis in vivo, however, has been limited to SNF5 mutations that result primarily in malignant rhabdoid tumors (MRTs) in humans and MRTs as well as other sarcomas in mice. We previously generated a null mutation of the Brg1 catalytic subunit in the mouse and reported that homozygotes die during embryogenesis. Here, we demonstrate that Brg1 heterozygotes are susceptible to mammary tumors that are fundamentally different than Snf5 tumors. First, mammary tumors are carcinomas not sarcomas. Second, Brg1+/- tumors arise because of haploinsufficiency rather than loss of heterozygosity. Third, Brg1+/- tumors exhibit genomic instability but not polyploidy based on array comparative genomic hybridization results. We monitored Brg1+/-, Brm-/- double-mutant mice but did not observe any tumors resembling those from Snf5 mutants, indicating that the Brg1+/- and Snf5+/- tumor phenotypes do not differ simply because Brg1 has a closely related paralog whereas Snf5 does not. These findings demonstrate that BRG1 and SNF5 are not functionally equivalent but protect against cancer in different ways. We also demonstrate that Brg1+/- mammary tumors have relatively heterogeneous gene expression profiles with similarities and differences compared to other mouse models of breast cancer. The Brg1+/- expression profiles are not particularly similar to mammary tumors from Wap-T121 transgenic line where RB is perturbed. We were also unable to detect a genetic interaction between the Brg1+/- and Rb+/- tumor phenotypes. These latter findings do not support a BRG1-RB interaction in vivo.