Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

Characterization of a synthetic calmodulin-binding peptide derived from Bacillus anthracis adenylate cyclase.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 25 Jan 1993

Munier H, Blanco FJ, Prêcheur B, Diesis E, Nieto JL, Craescu CT, Bârzu O,

Link to Pubmed [PMID] – 8420946

J Biol Chem 1993 Jan; 268(3): 1695-701

A 34-amino acid peptide corresponding to residues 532-565 of Bacillus anthracis adenylate cyclase (P532-565), a calmodulin (CaM)-activated enzyme, was synthesized by solid phase method. Although not homologous to any known CaM binding sequence, P532-565 exhibits molecular features characteristic of this class of peptides: a higher proportion of basic and hydrophobic residues, segregated onto the two faces of the alpha-helical structure. Fluorescence measurements and gel retardation analysis showed that P532-565 binds CaM in a Ca(2+)-dependent manner, with a binding energy that represents 80% of the binding energy of the adenylate cyclase-CaM complex. Circular dichroism analysis showed that P532-565 exists in solution as a mixture of random-coil and alpha-helical structures and that trifluoroethanol increases the relative proportion of alpha-helical population. Analysis of proton NMR spectrum in H2O allowed identification of the different amino acid spin systems and complete spectral assignment. The pattern of nuclear Overhauser effect connectivities, intense NN(i,i + 1) and medium range alpha N(i,i + 3) and alpha beta (i,i + 3) indicate the presence of an alpha-helix in the carboxylterminal end (between residues 551 and 563) in fast exchange with extended structures. These data, together with CaM-binding properties of Bordetella pertussis adenylate cyclase, show that despite rather divergent primary structures, the two bacterial enzymes possess similar structural organization of their binding sites for activator protein.