Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Toxicology and applied pharmacology

Cellular mechanisms of acrolein-induced alteration in calcium signaling in airway smooth muscle

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Toxicology and applied pharmacology - 15 Apr 2000

Hyvelin JM, Roux E, Prévost MC, Savineau JP, Marthan R

Link to Pubmed [PMID] – 10764631

Toxicol. Appl. Pharmacol. 2000 Apr;164(2):176-83

Acrolein, an unsaturated aliphatic aldehyde, is a potent respiratory irritant. We have previously observed that acrolein administered ex vivo to isolated airways alters subsequent airway responsiveness to muscarinic agonists in terms of both mechanical activity of rings and calcium signaling in isolated cells. In the present study, we have examined the mechanisms by which acrolein alters Ca(2+) signaling. In freshly isolated rat tracheal smooth muscle cells, preexposure to acrolein increased the [Ca(2+)](i) oscillation frequency in response to endothelin 1 (ET-1, 0.1 microM), a contractile agonist that acts via the activation of a receptor different from the muscarinic cholinoceptor. We then studied acrolein-induced alteration in cell signaling with special attention to the steps downstream of membrane receptor activation i.e., the inositol 1,4,5-trisphosphate (InsP(3)) signaling pathway. Pretreatment of cells with LiCl (20 mM), a modulator of InsP(3) concentration, mimicked the effect of acrolein exposure on agonist-induced [Ca(2+)](i) response, i.e., increased the amplitude of the first Ca(2+) rise and the oscillation frequency in response to 0.1 and 10 microM acetylcholine (ACh), respectively. Moreover, in tracheal smooth muscle, preexposure to acrolein significantly increased carbachol-induced [(3)H]inositol-phosphates accumulation, up to 34 +/- 11% above unexposed tissue values. Finally, in beta-escin permeabilized cells, injection of InsP(3) (0.1-10 microM) induced a concentration-dependent [Ca(2+)](i) rise followed, for high InsP(3) concentration, by [Ca(2+)](i) oscillations, a calcium response whose pattern was similar to that induced by ACh. Exposure to acrolein did not alter the InsP(3)-induced [Ca(2+)](i) response. These results indicate that the effect of acrolein exposure on Ca(2+) responses in airway smooth muscle is not restricted to activation of the muscarinic cholinoceptor and is due to an enhancement in agonist-induced InsP(3) production. Since acrolein does not modify InsP(3) receptor channel sensitivity, we conclude that acrolein-induced alteration in calcium signaling can be ascribed to its sole effect on InsP(3) production.

http://www.ncbi.nlm.nih.gov/pubmed/10764631