Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Development (Cambridge, England)

Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Development (Cambridge, England) - 07 Nov 2012

Mourikis P, Gopalakrishnan S, Sambasivan R, Tajbakhsh S

Link to Pubmed [PMID] – 23136394

Development 2012 Dec;139(24):4536-48

During organogenesis, a continuum of founder stem cells produces temporally distinct progeny until development is complete. Similarly, in skeletal myogenesis, phenotypically and functionally distinct myoblasts and differentiated cells are generated during development. How this occurs in muscle and other tissues in vertebrates remains largely unclear. We showed previously that committed cells are required for maintaining muscle stem cells. Here we show that active Notch signalling specifies a subpopulation of myogenic cells with high Pax7 expression. By genetically modulating Notch activity, we demonstrate that activated Notch (NICD) blocks terminal differentiation in an Rbpj-dependent manner that is sufficient to sustain stem/progenitor cells throughout embryogenesis, despite the absence of committed progeny. Although arrested in lineage progression, NICD-expressing cells of embryonic origin progressively mature and adopt characteristics of foetal myogenic cells, including expression of the foetal myogenesis regulator Nfix. siRNA-mediated silencing of NICD promotes the temporally appropriate foetal myogenic fate in spite of expression of markers for multiple cell types. We uncover a differential effect of Notch, whereby high Notch activity is associated with stem/progenitor cell expansion in the mouse embryo, yet it promotes reversible cell cycle exit in the foetus and the appearance of an adult muscle stem cell state. We propose that active Notch signalling is sufficient to sustain an upstream population of muscle founder stem cells while suppressing differentiation. Significantly, Notch does not override other signals that promote temporal myogenic cell fates during ontology where spatiotemporal developmental cues produce distinct phenotypic classes of myoblasts.