Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Current topics in developmental biology

Blood vessels and the satellite cell niche

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Current topics in developmental biology - 01 Jan 2011

Mounier R, Chrétien F, Chazaud B

Link to Pubmed [PMID] – 21621069

Curr. Top. Dev. Biol. 2011;96:121-38

The fate of stem cell is regulated by cues received from the surrounding area. Recently, the concept of “stem cell zone”–rather than a predefined niche–introduced the notion of dynamic and permanent interactions between stem cells and their microenvironment. In adult skeletal muscle, satellite cells are considered as the main stem cells responsible for muscle repair and maintenance. They are localized close to vessels regardless their state of activation and differentiation. Moreover, the number of satellite cells is positively correlated to the capillarization of the myofiber. Angiogenesis has been known for a long time to be essential for muscle repair. However, relationships between vessel cells and satellite/myogenic cells that govern myogenic cell expansion, myogenesis, and angiogenesis have been only recently investigated. In this chapter, we discuss the possible existence of a vascular amplifying/differentiating niche, in an attempt to reconciliate several recent observations showing that satellite/myogenic cells interact with various cell types during the time course of muscle regeneration. Indeed, endothelial cells (ECs) stimulate myogenic cell growth and, inversely, differentiating myogenic cells promote angiogenesis. However, stromal cells may also provide some proliferating or differentiating cues to satellite/myogenic cells in this vascular area. Although some molecular effectors have been identified, including growth factors and cytokines, molecular regulations that occur within this vascular amplifying/differentiating niche requires further investigation. At the end of muscle repair, maturation of newly formed vessels takes place. In this context, we discuss the potential quiescence niche of satellite cells and the specific role of periendothelial cells. Indeed, periendothelial cells promote the return to quiescence of a subset of satellite/myogenic cells and maintain their quiescence (through Angiopoietin-1/Tie-2 signaling). We ask to what extent the environment may control the fate choice of satellite/myogenic cells and we also question the “hypoxic niche” in skeletal muscle, such a quiescence niche having being observed in the bone marrow.