Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Molecular microbiology

Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular microbiology - 14 Feb 2008

Rincon-Enriquez G, Crété P, Barras F, Py B

Link to Pubmed [PMID] – 18284573

Mol. Microbiol. 2008 Mar;67(6):1257-73

The Erwinia chrysanthemi genome is predicted to encode three systems, Nif, Isc and Suf, known to assist Fe/S cluster biogenesis and the CsdAE cysteine desulphurase. Single iscU, hscA and fdx mutants were found sensitive to paraquat and exhibited reduced virulence on both chicory leaves and Arabidopsis thaliana. Depletion of the whole Isc system led to a pleiotropic phenotype, including sensitivity to both paraquat and 2,2′-dipyridyl, auxotrophies for branched-chain amino acids, thiamine, nicotinic acid, and drastic alteration in virulence. IscR was able to suppress all of the phenotypes listed above in a sufC-dependent manner while depletion of the Isc system led to IscR-dependent activation of the suf operon. No virulence defects were found associated with csdA or nifS mutations. Surprisingly, we found that the sufC mutant was virulent against A. thaliana, whereas its virulence had been found altered in Saintpaulia. Collectively, these results lead us to propose that E. chrysanthemi possess the Fe/S biogenesis strategy suited to the physico-chemical conditions encountered in its host upon infection. In this view, the IscR regulator, which controls both Isc and Suf, is predicted to play a major role in the ability of E. chrysanthemi to colonize a wide array of different plants.