Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Genome biology

Analysis of mammalian gene batteries reveals both stable ancestral cores and highly dynamic regulatory sequences

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Genome biology - 16 Dec 2008

Ettwiller L, Budd A, Spitz F, Wittbrodt J

Link to Pubmed [PMID] – 19087242

Genome Biol. 2008;9(12):R172

BACKGROUND: Changes in gene regulation are suspected to comprise one of the driving forces for evolution. To address the extent of cis-regulatory changes and how they impact on gene regulatory networks across eukaryotes, we systematically analyzed the evolutionary dynamics of target gene batteries controlled by 16 different transcription factors.

RESULTS: We found that gene batteries show variable conservation within vertebrates, with slow and fast evolving modules. Hence, while a key gene battery associated with the cell cycle is conserved throughout metazoans, the POU5F1 (Oct4) and SOX2 batteries in embryonic stem cells show strong conservation within mammals, with the striking exception of rodents. Within the genes composing a given gene battery, we could identify a conserved core that likely reflects the ancestral function of the corresponding transcription factor. Interestingly, we show that the association between a transcription factor and its target genes is conserved even when we exclude conserved sequence similarities of their promoter regions from our analysis. This supports the idea that turnover, either of the transcription factor binding site or its direct neighboring sequence, is a pervasive feature of proximal regulatory sequences.

CONCLUSIONS: Our study reveals the dynamics of evolutionary changes within metazoan gene networks, including both the composition of gene batteries and the architecture of target gene promoters. This variation provides the playground required for evolutionary innovation around conserved ancestral core functions.