Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Applied microbiology and biotechnology

Analysis of DNA repeats in bacterial plasmids reveals the potential for recurrent instability events

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Applied microbiology and biotechnology - 23 May 2010

Oliveira PH, Prather KJ, Prazeres DM, Monteiro GA

Link to Pubmed [PMID] – 20496146

Appl. Microbiol. Biotechnol. 2010 Aug;87(6):2157-67

Structural instability has been frequently observed in natural plasmids and vectors used for protein expression or DNA vaccine development. However, there is a lack of information concerning hotspot mapping, namely, DNA repeats or sequences identical to the host genome. This led us to evaluate the abundance and distribution of direct, inverted, and tandem repeats with high recombination potential in 36 natural plasmids from ten bacterial genera, as well as in several widely used bacterial and mammalian expression vectors. In natural plasmids, we observed an overrepresentation of close direct repeats in comparison to inverted ones and a preferential location of repeats with high recombination potential in intergenic regions, suggesting a highly plastic and dynamic behavior. In plasmid vectors, we found a high density of repeats within eukaryotic promoters and non-coding sequences. As a result of this in silico analysis, we detected a spontaneous recombination between two 21-bp direct repeats present in the human cytomegalovirus early enhancer/promoter (huCMV EEP) of the pCIneo plasmid. This finding is of particular importance, as the huCMV EEP is one of the most frequently used regulatory elements in plasmid vectors. Because pDNA integration into host gDNA can have adverse consequences in terms of plasmid processing and host safety, we also mapped several regions with high probability to mediate integration into the Escherichia coli or human genomes. Like repeated regions, some of these were located in non-coding regions of the plasmids, thus being preferential targets to be removed.