Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of molecular biology

An objective assessment of conformational variability in complexes of hepatitis C virus polymerase with non-nucleoside inhibitors

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of molecular biology - 08 Oct 2011

Caillet-Saguy C, Simister PC, Bressanelli S

Link to Pubmed [PMID] – 22008450

J. Mol. Biol. 2011 Dec;414(3):370-84

A major target for antiviral therapy against hepatitis C virus (HCV) is the HCV polymerase nonstructural protein 5B (NS5B). Huge efforts have been devoted to the development of nucleoside and non-nucleoside inhibitors (NNIs) of NS5B. An offshoot of these efforts has been the structural characterization of the interaction of NS5B with NNIs by X-ray crystallography. These works have shown that the conformation of recombinant NS5B is very similar across strains, constructs and complexes, making evaluation of the long-range conformational effects of NNIs nontrivial. Using procedures appropriate to the evaluation of such minor but potentially important differences, we objectively assessed the conformational diversity in the 78 available genotype 1b NS5B structures in the Protein Data Bank. We find that there are 20 significantly different NS5B conformations available, but all are geometrically close to a closed, RNA synthesis initiation-competent one. Within this fairly restricted range, differences can be mapped to movements of NS5B domains and subregions. Most of this information is actually defined by small but significant changes in complexes with NNIs. We thus establish rigorously the moving parts of the NS5B molecular machine and the previously unrecognized hinge points that come into play upon NNI binding. We propose that NNIs binding at three of the four distinct sites specifically inhibit the initiation step by the same mechanism: they prevent NS5B’s “thumb” from quite reaching the proper initiation-competent position. Furthermore, we suggest that a small number of critical hinges in the NS5B structure may emerge as sites of resistance mutations during future antiviral treatment.