Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Genetic epidemiology

A test for gene-environment interaction in the presence of measurement error in the environmental variable.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Genetic epidemiology - 01 Apr 2018

Aschard H, Spiegelman D, Laville V, Kraft P, Wang M,

Link to Pubmed [PMID] – 29424028

Link to DOI – 10.1002/gepi.22113

Genet Epidemiol 2018 04; 42(3): 250-264

The identification of gene-environment interactions in relation to risk of human diseases has been challenging. One difficulty has been that measurement error in the exposure can lead to massive reductions in the power of the test, as well as in bias toward the null in the interaction effect estimates. Leveraging previous work on linear discriminant analysis, we develop a new test of interaction between genetic variants and a continuous exposure that mitigates these detrimental impacts of exposure measurement error in ExG testing by reversing the role of exposure and the diseases status in the fitted model, thus transforming the analysis to standard linear regression. Through simulation studies, we show that the proposed approach is valid in the presence of classical exposure measurement error as well as when there is correlation between the exposure and the genetic variant. Simulations also demonstrated that the reverse test has greater power compared to logistic regression. Finally, we confirmed that our approach eliminates bias from exposure measurement error in estimation. Computing times are reduced by as much as fivefold in this new approach. For illustrative purposes, we applied the new approach to an ExGWAS study of interactions with alcohol and body mass index among 1,145 cases with invasive breast cancer and 1,142 controls from the Cancer Genetic Markers of Susceptibility study.