Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Xavier Montagutelli, Institut Pasteur
Publication : American journal of physiology. Gastrointestinal and liver physiology

A mouse model provides evidence that genetic background modulates anemia and liver injury in erythropoietic protoporphyria

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in American journal of physiology. Gastrointestinal and liver physiology - 27 Jan 2005

Abitbol M, Bernex F, Puy H, Jouault H, Deybach JC, Guénet JL, Montagutelli X

Link to Pubmed [PMID] – 15677551

Am. J. Physiol. Gastrointest. Liver Physiol. 2005 Jun;288(6):G1208-16

Erythropoietic protoporphyria is an inherited disorder of heme biosynthesis caused by partial ferrochelatase deficiency, resulting in protoporphyrin (PP) overproduction by erythrocytes. In humans, it is responsible for painful skin photosensitivity and, occasionally, liver failure due to accumulation of PP in the liver. The ferrochelatase deficiency mouse mutation is the best animal model available for human erythropoietic protoporphyria. The original description, based on mice with a BALB/cByJCrl genetic background, reported a disease resembling the severe form of the human disease, with anemia, jaundice, and liver failure. Using congenic strains, we investigated the effect of genetic background on the severity of the phenotype. Compared with BALB/cByJCrl, C57BL/6JCrl mice developed moderate but increasing anemia and intense liver accumulation of PP with severe hepatocyte damage and loss. Bile excretory function was not affected, and bilirubin remained low. Despite the highest PP concentration in erythrocytes, anemia was mild and there were few PP deposits in the liver in SJL/JOrlCrl homozygotes. Discriminant analysis using six hematologic and biochemical parameters showed that homozygotes of the three genetic backgrounds could be clustered in three well-separated groups. These three congenic strains provide strong evidence for independent genetic control of bone marrow contribution of PP overproduction to development of liver disease and biliary PP excretion. They provide a tool to investigate the physiological mechanisms involved in these phenotypic differences and to identify modifying genes.