Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Cancer research

A genomic map of p53 binding sites identifies novel p53 targets involved in an apoptotic network

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Cancer research - 15 Jun 2005

Miled C, Pontoglio M, Garbay S, Yaniv M, Weitzman JB

Link to Pubmed [PMID] – 15958553

Cancer Res. 2005 Jun;65(12):5096-104

The transcriptional activity of the p53 protein is central to its role in tumor suppression. Identification of the complete repertoire of p53-regulated genes is critical for dissecting the complexity of the p53 network. Although several different approaches have been used to characterize the p53 genetic program, we still lack a comprehensive molecular understanding of how p53 prevents cancer. Using a computational approach, we generated a genome-wide map of p53 binding sites (p53BS) to identify novel p53 target genes. We show that the presence of nearby p53BS can identify new proapoptotic members of the Bcl2 family. We show that p53 binds to p53BS identified in the BCL-G/BCL2L14 gene and that induction of this gene contributes to p53-mediated apoptosis. We found that p53 activates the COL18A1 gene encoding the precursor for the antiangiogenic factor endostatin. We also show that p53 up-regulates the MAP4K4 gene and activates the c-Jun NH2-terminal kinase (JNK) pathway to drive apoptosis. Thus, unbiased mapping of the genomic landscape of p53BS provides a systematic and complementary approach to identify novel factors and connections in the p53 genetic network. Our study illustrates how systematic genomic approaches can identify binding sites that are functionally relevant for a p53 transcriptional program. The genetic link among p53, antiangiogenic factors, and the JNK signaling pathway adds new dimensions to understanding p53 function in highly connected genetic networks.

http://www.ncbi.nlm.nih.gov/pubmed/15958553