Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Diagnostics (Basel, Switzerland)

Interpretable Clinical Decision Support System for Audiology Based on Predicted Common Audiological Functional Parameters (CAFPAs).

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Diagnostics (Basel, Switzerland) - 11 Feb 2022

Buhl M

Link to Pubmed [PMID] – 35204556

Link to DOI – 10.3390/diagnostics12020463

Diagnostics (Basel) 2022 Feb; 12(2):

Common Audiological Functional Parameters (CAFPAs) were previously introduced as abstract, measurement-independent representation of audiological knowledge, and expert-estimated CAFPAs were shown to be applicable as an interpretable intermediate layer in a clinical decision support system (CDSS). Prediction models for CAFPAs were built based on expert knowledge and one audiological database to allow for data-driven estimation of CAFPAs for new, individual patients for whom no expert-estimated CAFPAs are available. Based on the combination of these components, the current study explores the feasibility of constructing a CDSS which is as interpretable as expert knowledge-based classification and as data-driven as machine learning-based classification. To test this hypothesis, the current study investigated the equivalence in performance of predicted CAFPAs compared to expert-estimated CAFPAs in an audiological classification task, analyzed the importance of different CAFPAs for high and comparable performance, and derived explanations for differences in classified categories. Results show that the combination of predicted CAFPAs and statistical classification enables to build an interpretable but data-driven CDSS. The classification provides good accuracy, with most categories being correctly classified, while some confusions can be explained by the properties of the employed database. This could be improved by including additional databases in the CDSS, which is possible within the presented framework.