Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Infection and immunity

Growth of Candida albicans cells on the physiologically relevant carbon source lactate affects their recognition and phagocytosis by immune cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Infection and immunity - 01 Jan 2013

Ene IV, Cheng SC, Netea MG, Brown AJ

Link to Pubmed [PMID] – 23115042

Link to DOI – 10.1128/IAI.01092-12

Infect Immun 2013 Jan; 81(1): 238-48

Candida albicans is a normal resident of the human gastrointestinal and urogenital tracts and also a prevalent fungal pathogen. During both commensalism and infection, it must match the immunological defenses of its host while adapting to environmental cues and the local nutrient status. C. albicans regularly colonizes glucose-poor niches, thereby depending upon alternative carbon sources for growth. However, most studies of host immune responses to C. albicans have been performed on fungal cells grown on glucose, and the extent to which alternative physiologically relevant carbon sources impact innate immune responses has not been studied. The fungal cell wall is decorated with multifarious pathogen-associated molecular patterns and is the main target for recognition by host innate immune cells. Cell wall architecture is both robust and dynamic, and it is dramatically influenced by growth conditions. We found that growth of C. albicans cells on lactate, a nonfermentative carbon source available in numerous anatomical niches, modulates their interactions with immune cells and the resultant cytokine profile. Notably, lactate-grown C. albicans stimulated interleukin-10 (IL-10) production while decreasing IL-17 levels, rendering these cells less visible to the immune system than were glucose-grown cells. This trend was observed in clinical C. albicans isolates from different host niches and from different epidemiological clades. In addition, lactate-grown C. albicans cells were taken up by macrophages less efficiently, but they were more efficient at killing and escaping these phagocytic cells. Our data indicate that carbon source has a major impact upon the C. albicans interaction with the innate immune system.