Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Advances in virus research

Coupling of rotavirus genome replication and capsid assembly

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Advances in virus research - 01 Jan 2007

Patton JT, Vasquez-Del Carpio R, Tortorici MA, Taraporewala ZF

Link to Pubmed [PMID] – 17222694

Adv. Virus Res. 2007;69:167-201

The Reoviridae family represents a diverse collection of viruses with segmented double-stranded (ds)RNA genomes, including some that are significant causes of disease in humans, livestock, and plants. The genome segments of these viruses are never detected free in the infected cell but are transcribed and replicated within viral cores by RNA-dependent RNA polymerase (RdRP). Insight into the replication mechanism has been provided from studies on Rotavirus, a member of the Reoviridae whose RdRP can specifically recognize viral plus (+) strand RNAs and catalyze their replication to dsRNAs in vitro. These analyses have revealed that although the rotavirus RdRP can interact with recognition signals in (+) strand RNAs in the absence of other proteins, the conversion of this complex to one that can support initiation of dsRNA synthesis requires the presence and partial assembly of the core capsid protein. By this mechanism, the viral polymerase can carry out dsRNA synthesis only when capsid protein is available to package its newly made product. By preventing the accumulation of naked dsRNA within the cell, the virus avoids triggering dsRNA-dependent interferon signaling pathways that can induce expression and activation of antiviral host proteins.