Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Nadia Naffakh, Institut Pasteur
Immunofluorescence detection of influenza virus nucleoprotein in infected cells
Publication : Antimicrobial agents and chemotherapy

Natural variation can significantly alter the sensitivity of influenza A (H5N1) viruses to oseltamivir.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Antimicrobial agents and chemotherapy - 28 Aug 2006

Rameix-Welti MA, Agou F, Buchy P, Mardy S, Aubin JT, Véron M, van der Werf S, Naffakh N,

Link to Pubmed [PMID] – 16940075

Antimicrob Agents Chemother 2006 Nov; 50(11): 3809-15

Geographic spread of highly pathogenic avian H5N1 influenza viruses may give rise to an influenza pandemic. During the first months of a pandemic, control measures would rely mainly on antiviral drugs, such as the neuraminidase (NA) inhibitors oseltamivir and zanamivir. In this study, we compare the sensitivities to oseltamivir of the NAs of several highly pathogenic H5N1 viruses isolated in Asia from 1997 to 2005. The corresponding 50% inhibitory concentrations were determined using a standard in vitro NA inhibition assay. The K(m) for the substrate and the affinity for the inhibitor (K(i)) of NA were determined for a 1997 and a 2005 virus, using an NA inhibition assay on cells transiently expressing the viral enzyme. Our data show that the sensitivities of the NAs of H5N1 viruses isolated in 2004 and 2005 to oseltamivir are about 10-fold higher than those of earlier H5N1 viruses or currently circulating H1N1 viruses. Three-dimensional modeling of the N1 protein predicted that Glu248Gly and Tyr252His changes could account for increased sensitivity. Our data indicate that genetic variation in the absence of any drug-selective pressure may result in significant variations in sensitivity to anti-NA drugs. Although the clinical relevance of a 10-fold increase in the sensitivity of NA to oseltamivir needs to be investigated further, the possibility that sensitivity to anti-NA drugs could increase (or possibly decrease) significantly, even in the absence of treatment, underscores the need for continuous evaluation of the impact of genetic drift on this parameter, especially for influenza viruses with pandemic potential.