Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Radiation research

8-OxoA inhibits the incision of an AP site by the DNA glycosylases Fpg, Nth and the AP endonuclease HAP1

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Radiation research - 01 Jan 2005

Lomax ME, Salje H, Cunniffe S, O'Neill P

Link to Pubmed [PMID] – 15606310

Radiat. Res. 2005 Jan;163(1):79-84

Ionizing radiation induces clustered DNA damage sites, whereby two or more individual DNA lesions are formed within one or two helical turns of DNA by a single radiation track. A subset of DNA clustered damage sites exist in which the lesions are located in tandem on the same DNA strand. Recent studies have established that two closely opposed lesions impair the repair machinery of the cell, but few studies have investigated the processing of tandem lesions. In this study, synthetic double-stranded oligonucleotides were synthesized to contain 8-oxoA and an AP site in tandem, separated by up to four bases in either a 5′ or 3′ orientation. The influence 8-oxoA has on the incision of the AP site by the E. coli glycosylases Fpg and Nth protein and the human AP endonuclease HAP1 was assessed. 8-OxoA has little or no effect on the efficiency of incision of the AP site by Nth protein; however, the efficiency of incision of the AP site by Fpg protein is reduced in the presence of 8-oxoA even up to a four-base separation in both the 5′ and 3′ orientations. 8-OxoA influences the efficiency of HAP1 incision of the AP site only when it is 3′ to the AP site and separated by up to two bases. This study demonstrates that the initial stages of base excision repair can be impaired by the presence of a second base lesion in proximity to an AP site on the same DNA strand. This impairment could have biological consequences, such as mutation induction, if the AP site is present at replication.