Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Bioinformatics (Oxford, England)

Automatic clustering of docking poses in virtual screening process using self-organizing map

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Bioinformatics (Oxford, England) - 12 Nov 2009

Bouvier G, Evrard-Todeschi N, Girault JP, Bertho G

Link to Pubmed [PMID] – 19910307

Bioinformatics 2010 Jan;26(1):53-60

MOTIVATION: Scoring functions provided by the docking software are still a major limiting factor in virtual screening (VS) process to classify compounds. Score analysis of the docking is not able to find out all active compounds. This is due to a bad estimation of the ligand binding energies. Making the assumption that active compounds should have specific contacts with their target to display activity, it would be possible to discriminate active compounds from inactive ones with careful analysis of interatomic contacts between the molecule and the target. However, compounds clustering is very tedious due to the large number of contacts extracted from the different conformations proposed by docking experiments.

RESULTS: Structural analysis of docked structures is processed in three steps: (i) a Kohonen self-organizing map (SOM) training phase using drug-protein contact descriptors followed by (ii) an unsupervised cluster analysis and (iii) a Newick file generation for results visualization as a tree. The docking poses are then analysed and classified quickly and automatically by AuPosSOM (Automatic analysis of Poses using SOM). AuPosSOM can be integrated into strategies for VS currently employed. We demonstrate that it is possible to discriminate active compounds from inactive ones using only mean protein contacts’ footprints calculation from the multiple conformations given by the docking software. Chemical structure of the compound and key binding residues information are not necessary to find out active molecules. Thus, contact-activity relationship can be employed as a new VS process.

AVAILABILITY: AuPosSOM is available at http://www.aupossom.com.