Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of molecular biology

Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of molecular biology - 27 Feb 1998

Guijarro JI, Morton CJ, Plaxco KW, Campbell ID, Dobson CM

Link to Pubmed [PMID] – 9551103

J. Mol. Biol. 1998 Feb;276(3):657-67

The refolding kinetics of the chemically denatured SH3 domain of phosphatidylinositol 3′-kinase (PI3-SH3) have been monitored by real-time one-dimensional 1H NMR coupled with a variety of other biophysical techniques. These experiments indicate that the refolding kinetics of PI3-SH3 are biphasic. The slow phase (27 (+/- 8)% amplitude) is due to a population of substantially unfolded molecules with an incorrectly configured cis proline residue. The fast phase (73 (+/- 8)% amplitude) corresponds to the folding of protein molecules with proline residues in a trans configuration in the unfolded state. NMR experiments indicate that the first species populated after the initiation of folding exhibit poor chemical shift dispersion and have spectra very similar to that of the denatured protein in 8 M guanidine hydrochloride. Linear combinations of the first spectrum and of the spectrum of the native protein accurately reconstruct all of the spectra acquired during refolding. Consistent with this, native side-chain and backbone H alpha atom packing (NMR), secondary structure (far-UV circular dichroism), burial of aromatic residues (near-UV circular dichroism), intrinsic fluorescence and peptide binding activity are all recovered with effectively identical kinetics. Equilibrium unfolding and folding/unfolding kinetics yield, within experimental error, identical values for the free energy of unfolding (delta Gu-H2O = 3.38 kcal mol-1) and for the slope of the free energy of unfolding versus denaturant concentration (meq = 2.33 kcal mol-1 M-1). Together, these data provide strong evidence that PI3-SH3 folds without significant population of kinetic well-structured intermediates. That PI3-SH3 folds slowly (time constant 2.8 seconds in H2O at 20 degrees C) indicates that slow refolding is not always a consequence of kinetic traps but may be observed even when a protein appears to fold via a simple, two-state mechanism.