Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Virology

Comparative analysis of the ability of the polymerase complexes of influenza viruses type A, B and C to assemble into functional RNPs that allow expression and replication of heterotypic model RNA templates in vivo

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Virology - 20 Dec 1999

Crescenzo-Chaigne B, Naffakh N, van der Werf S

Link to Pubmed [PMID] – 10600605

Virology 1999 Dec;265(2):342-53

Influenza viruses type A, B, and C are human pathogens that share common structural and functional features, yet they do not form natural reassortants. To determine to what extent type-specific interactions of the polymerase complex with template RNA contribute to this lack of genotypic mixing, we investigated whether homotypic or heterotypic polymerase complexes support the expression and replication of model type A, B, or C RNA templates in vivo. A plasmid-based expression system, as initially described by Pleschka et al. [(1996) J. Virol. 70, 4188-4192] for influenza A virus, was developed for influenza viruses B/Harbin/7/94 and C/Johannesburg/1/66. The type A core proteins expressed heterotypic model RNAs with similar efficiencies as the homotypic RNA. The influenza B virus model RNA was efficiently expressed by all three types of polymerase complexes. Although no functional polymerase complex could be reconstituted with heterotypic P protein subunits, when the influenza A virus P proteins were expressed together with heterotypic nucleoproteins, significant, albeit limited, expression of RNA templates of all influenza virus types was detected. Taken together, our results suggest that less strict type-specific interactions are involved for the polymerase complex of influenza A compared with influenza B or C viruses.