Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Biological reviews of the Cambridge Philosophical Society

Molecular evidence of host influences on the evolution and spread of human tapeworms

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Biological reviews of the Cambridge Philosophical Society - 09 Feb 2012

Michelet L, Dauga C

Link to Pubmed [PMID] – 22321512

Biol Rev Camb Philos Soc 2012 Aug;87(3):731-41

The taeniasis/cysticercosis complex is included in the list of neglected zoonotic diseases by the World Health Organization due to its significant impact on public health in tropical areas. Cysticercosis is still endemic in many regions of Asia, Africa and Latin America. Long absent in Europe and in other developed countries, cysticercosis has recently re-emerged in the United States and Canada, due to immigration, travel and local transmission. This has encouraged the use of molecular data to understand better the influence of animal and human hosts on the emergence and spread of Taenia species. The increasing number of mitochondrial sequences now available from human tapeworms and recent advances in computational tools has enabled reconstruction of the biogeography and evolutionary history of these organisms. New molecular data have provided insights into the biogeography of T. solium, T. asiatica and T. saginata. A Bayesian statistical framework using variable evolutionary rates from lineage to lineage has allowed an improved timescale analysis of human tapeworms. The dates of divergence obtained were compared to the timing of evolutionary events in the history of their hosts, based on the hypothesis that Taenia spp. and their hosts share a common history. Herein, we review changes in the definitive and secondary hosts and human interactions that underlie the differentiation and evolution of tapeworms. Species diversification of Taenia seems to be closely linked with the evolution of intermediate hosts in response to climatic events during the Pleistocene. Different genotypes of T. solium emerged when European and Asian wild boar Sus spp. populations diverged. Taenia saginata emerged when wild cattle Bos primigenius evolved and when zebu Bos indicus and taurine Bos taurus ancestors separated. Humans through migrations and later with the development of farming and animal husbandry may have had a significant impact on the spread and diversification of tapeworms. Migrations of Homo erectus from Africa to Asia and later of Homo sapiens facilitated the diversification and dispersal of T. solium and T. saginata populations. The development of animal husbandry, making Sus scrofa and Bos taurus preferential intermediate hosts, led to the worldwide distribution of parasites. New molecular data combined with an innovative dating method allow us to explain the ways in which ancient human migrations promoted the emergence and spread of taeniasis and cysticercosis around the world. Another intriguing phenomenon explained better by our approach is the influence of human settlement on the spread of these parasites in recently inhabited areas. The diverse nature of T. solium currently observed in Madagascar may correspond to multiple imports of the parasite during Austronesian migrations, while in Mexico a recent influence of humans during the colonial period is more likely. Human activities, especially food preparation and husbandry methods, remain responsible for the transmission and persistence of these parasites.