Link to Pubmed [PMID] – 22983195
Cell Adh Migr 2012 Jul-Aug;6(4):327-32
Cancer cell dissemination away from the primary tumor and their ability to form metastases remain the major causes of death from cancer. Understanding the molecular mechanisms triggering this event could lead to the design of new cancer treatments. The establishment and the maintenance of tissue architecture depend on the coordination of cell behavior within this tissue. Cell-cell interactions must form adhesive structures between neighboring cells while remaining highly dynamic to allow and control tissue renewal or remodeling. Among intercellular junctions, cadherin-based adherens junctions mediate strong physical interactions and transmit information from the cell microenvironment to the cytoplasm. Disruption of these cell-cell contacts perturbs the polarity of epithelial tissues leading to their disorganization and ultimately to aggressive carcinomas. In non-epithelial tissues, the role of cadherins in the development of cancer is still debated. We recently found that downregulation of N-cadherin in malignant glioma-the most frequent primary brain tumor-results in cell polarization defects leading to abnormal motile behavior with increased cell speed and decreased persistence in directionality. Re-expression of N-cadherin in glioma cells restores cell polarity and limits glioma cell migration, providing a potential therapeutic tool for diffuse glioma.