Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Molecular microbiology

Srr2, a multifaceted adhesin expressed by ST-17 hypervirulent Group B Streptococcus involved in binding to both fibrinogen and plasminogen

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular microbiology - 17 Jul 2015

Six A, Bellais S, Bouaboud A, Fouet A, Gabriel C, Tazi A, Dramsi S, Trieu-Cuot P, Poyart C

Link to Pubmed [PMID] – 26094503

Mol. Microbiol. 2015 Sep;97(6):1209-22

The Group B Streptococcus (GBS) ‘hypervirulent’ ST-17 clone is strongly associated with invasive neonatal meningitis. Comparative genome analyses revealed that the serine-rich repeat (Srr) glycoprotein Srr2 is a cell wall-anchored protein specific for ST-17 strains, the non-ST-17 isolates expressing Srr1. Here, we unravel the binding capacity of GBS Srr proteins to relevant components of the host fibrinolysis pathway. We demonstrate that: (i) Srr2 binds plasminogen and plasmin whereas Srr1 does not; (ii) the ability of ST-17 strains to bind fibrinogen reflects a high level surface display of Srr2 combined with a higher affinity of Srr2 than Srr1 to bind this ligand; and (iii) Srr2 binding to host plasma proteins results in the formation of bacterial aggregates that are efficiently endocytosed by phagocytes. Importantly, we show that Srr2 increased bacterial survival to phagocytic killing and bacterial persistence in a murine model of meningitis. We conclude that Srr2 is a multifaceted adhesin used by the ST-17 clone to hijack ligands of the host coagulation system, thereby contributing to bacterial dissemination and invasiveness, and ultimately to meningitis.