Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Emeritus Professor
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Emeritus Professor
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Wellcome open research

Investigating the feasibility and potential of combining industry AMR monitoring systems: a comparison with WHO GLASS.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Wellcome open research - 01 Jan 2024

Rahbé E, Kovacevic A, Opatowski L, Leclerc QJ

Link to Pubmed [PMID] – 39372841

Link to DOI – 10.12688/wellcomeopenres.21181.2

Wellcome Open Res 2024 ; 9(): 248

Efforts to estimate the global burden of antimicrobial resistance (AMR) have highlighted gaps in existing surveillance systems. Data gathered from hospital networks globally by pharmaceutical industries to monitor antibiotic efficacy in different bacteria represent an underused source of information to complete our knowledge of AMR burden.. We analysed available industry monitoring systems to assess to which extent combining them could help fill the gaps in our current understanding of AMR levels and trends.We analysed six industry monitoring systems (ATLAS, GEARS, SIDERO-WT, KEYSTONE, DREAM, and SOAR) obtained from the Vivli platform and reviewed their respective isolates collection and analysis protocols. Using the R software, we designed a pipeline to harmonise and combine these into a single dataset. We assessed the reliability of resistance estimates from these sources by comparing the combined dataset to the publicly available subset of WHO GLASS for shared bacteria-antibiotic-country-year combinations.Combined, the industry monitoring systems cover 18 years (4 years for GLASS), 85 countries (71), 412 bacterial species (8), and 75 antibiotics (25). Although all industry systems followed a similar centralised testing approach, the patient selection protocol and associated sampling period were unclear. Over all reported years and countries, E.coli, K. pneumoniae and S. aureus resistance rates were in >65% of cases within 0.1 of the corresponding estimate in GLASS. We did not identify systemic bias towards resistance in industry systems compared to GLASS.High agreement values for available comparisons with GLASS suggest that data for other bacteria-antibiotic-country-year combinations only present in industry systems could complement GLASS; however, for this purpose patient and isolate selection criteria must first be clarified to understand the representativeness of industry systems. This additional source of information on resistance levels could help clinicians and stakeholders prioritize testing and select appropriate antibiotics in settings with limited surveillance data.Antimicrobial resistance (AMR) is a growing problem worldwide, but we don’t always have enough information to fully understand its extent and how it’s changing over time. In this study, we looked at data collected by pharmaceutical companies from hospitals around the world to see how well antibiotics are working against different bacteria. We wanted to see if combining these data sources could help us fill in gaps in global AMR surveillance. We reviewed the methods of six different systems that collect this data and developed an approach to combine them. Then, we compared this combined data to publicly available GLASS data from the WHO to check if it was reliable. We found that the data from the pharmaceutical companies covered more years, countries, bacterial species, and antibiotics than GLASS. Even though the way the data was collected by the companies wasn’t always clear, we saw that the resistance estimates were similar to those from GLASS for some common bacteria like E.coli, K. pneumoniae, and S. aureus. Overall, combining data from these different sources could improve our understanding of AMR worldwide, especially in places where surveillance is currently limited, and for Priority Pathogens not covered by GLASS.